Ho la chiave del testo crittografato, ma non so come usarlo [chiuso]

-5

Ho la chiave per questo testo crittografato, ma non ho idea di come posso applicarlo per decrittografarlo.

La chiave è: raul1235

Qualcuno può guidarmi come usarlo per decifrare?

Testo:

bR0ggXPLsgfiqmY+tHtk1+5b3fHxXiNzjJn9nLLy/UTu/ZyHVROHorkvy7bX9r8LAqeYuIPNVm1RiKMQ2DBrAhbnYBSIbiQw5No4iuo6VodAE2g8Xcz6zD71mIRIwS/Ss6LIGQZ8xE01kS9Ny/ON+vZM42HvqSOn/0yEp7bbikBr4+odldtFcJhPXrf+swLTnCLD7jCTAhmCpcyELcCb0Qn1vUWxG93jbGx+sGy/Etp4Q9J15vLKXNdy8N206wco6+R2m2n6nTTpEtEOrKEZVxPK41GbnQOTQwHmQBNDlsMZf+I4elF0ADeLe4Ozz4BxlP1wt/QOtXeilFgL5rI3t7q7EgM5FDDXHPVY4hSOE6SQNPqfsdrGS65nuplNGLbb/p7t/NkwhuQddBGE8HgOiyT+rFGp7aNNVFSx7FCL3uNyon41/xKhhhvg4AnmmDtVSkUNfE+3zjs/fl8LDW6njr+kv3ss6Ca9cIrMYgoHHhjqD3KTvJ0rDCxcjXIxvfviS9go/7h1fGTc3y1cHcx8k37UxX40ULvEjNhhTk587rIWerJoA5Aj7uxPYuBHooWZpnPdb6QvbojGqg3EuZdzzThE+DOqrxgtURYrCjGlzi0HR6zkNwBysDTCm0kB9EIzcAzFhmweitMlJblb8w9jIN9QXOCkJg7Zo+XWVFfnyNwSvI0mbGOMrUWOxVjH/S1OS7K2to81ulXP4cYSFuntVRQlfYIEk1/I6Vu57oNv2+MHMFrBVaLLaSiCIDq3ZDlSJpMrgkMU/OJX4899/BbChVgBrJmvoUHe4QsnGVbjYrWxgHF96LXqRQT6qno2FAqX1tkgr2jO2jkX2VZEUPiGHKwJnprUO/PK/+oDkdY3DDFWfOw6CV7B1mg46/g/KBPNgS1ARjG1Y1ESG8+tdqU7F2joH5TRTlJFFy760d0oA1VqQeksO6vkJgvpRb7OjEZCdU019FdI2QTIK3pTfYzliEoImglUEyZZ+/3TqF7NchiPv9i3FFcJjbno0pk0l4Mn8e3vLrJECd+OXSM6fAOc7FdVjdDE/aXAJPQ8btVJuDgxAPn8rw7pUmrlmBxZS1qS1Rm6dtJp9kcuS8BsVRcx7v8OLvfHp5cCcBYyuAqP0W0QJVzbXaZk3pWYKofuhUCCAQAOt41HoXNmtL2Intg6fS1D2dcA+Bt7Yl9r6B2nyMjYyxYfwRanIVcy1fY3SLwe2Pi8BBUjPJ5iXuMaD5/7bdJxesDscXu+YoLI+SwPmlTTXLMsDQT6e/ZdvuXW+t7Ra0ksxev4K3gPUuiOIzZg3KPEzuHSoCV4fLABMM83ip/mJchCo/+tEtcPfDMLJokXfggo5OyteQOHWePX6IqRJoH+3r3E0UYGwXpqvTjD3tnUhkVsVGkYrQKFimimLBTuVppzjRmZ5b3rFkXxbalIjceKLrdFyphX0dY7rjugkuRtI5F5e3IRDjJUYKn77cFsdXviI7vs/Zz/eW9qzC4SRxiX8tE07lqerlNSPPwcbyTa+pjq4Df2vWs3XvGotkwWYtYZA/H3PKvL9l0UxfGWhG2czy2rmXV4QwhDEReJkUANMph3fz7J7P94OJBGkgWGLVhv6/THGvZ54YHIe8aWpULcOzTgkGT3y3bmKhQGMV3pAcTq2bko3gUK3GBjk9Oj1RBK4yrW00aQvLuvXG7NxQFOg57V9gR4E2x9AqrXT9UQCZ1FN4v06Z05JrDoTMW0cmx9gIOT5lpMMRzhkkVt29PdJpPiGEfeYzyE9tqnMZfnRL4FsDc7bI8s7j+jVqAyRsDOcebFOZ8X8no89RSzEDwAiQnfrYOvDP43A4JccOYoLcNc7MLfJgv2ElwJsQU+QCm+AAK+H7tbjvSnp/LEtslH/guoD5OtIa659cz6pKRw0sCKh8AQOfbFcRmEnXaM/ar7LX++vSlJO/h3HXrt4Pr1aDmCGgYSRGGg0PHveSWcZF1uniT8Y4O2tCUgKXaMrrBGUQwN5u4s21H3yIY27BJPbUIoIl10a/fHyMWgwcRLalPu7hhVAynPe1UY6Kpzjs03x5nosl+nf1pt0O9SFTp2EVWyxMwa4A11QLVZap/oyvZV/emiwwlO81olREQLcw/lm2hNfTL+rE9MdW6p4rwQh+X03O64qB9KtqSXQUiepDJIeoSt4NVCcVyJ+W/Byf9xLr+0ofoDeVDG5EWVrtsHsTpmWadHZWpAUrTzsB0F2L+EuIfc7u6IthCLqemSoRaKuDT4myAy2ATPTRGwX63JQJ7K+MQwxC+Bf4kMgFjeAKhv47+bQiytpabHyaKkuJCCVGX0MrIp3TJCPrxW4lh0FztcQRYDMpdiaCc8FZmZeCE0ABM4JPBzB4wX6YhhRCEqq0YZzXJExjzsQVXTwaLOLCuXJa6l2CHsv9dXEgGB8JavUzpqrmr0PfE3FGKDafTq6xG8KJLzI6X/ry/s8YW1y/u1oQOECNOKEUPv5GelrzDgdPvZ/B0+U/EByEcFDkyzlRoot3RJ4RrAIc3eRrUB5+IEHnQAbIf64k7m6V+tLUXMN3Spi4asWJyyKcW4egKMW6iS3TEWLJtDpxm80NDRDtiHMkJrXUZ7snsrODHYOpKGnHdCtu/sKUPZadLVdfi8x+C/hUEKxckfpOvIVmLSZf7xAGF5KBTwGXG74Pq+IqgiwNk8krziLZ8L+EM3stRVdsX8MQvwbR2JpSZbDJ/RMmrVrDjUCoRHkpHNrngKjyeUJgNx+oVAwTUDHu0LaUf7DaSAb5WtroW3lEmXOX8JK8YJrA57IpcBr630bBw2MAhpXohndde88EVk2wZdmNbpsG+5YIQRdyrabS6AxVSfib1tZp509k0GDjOGmHKrdzjxWNRFwWdIfCxfT5fYrX2/elG6R00PhMxOFD3f9nLEqjVFD252G1fuDbUuEvaw1S/9eslqnM+WvNpsgjrUr8fmJ4dJW738nZEM5oeO11EPPYh6Zk7xcKKyCG85oQyH8rYi/otKtmquQBmTrTabF5X1O9NIH43V0TUo2WbGXf14/XkQdwVN/S5lrWYzvZEiUWbLwk4NBySYVsm5tQL3UCNW/lZcyRV2+UMcffnrJ9M41KsqL8lH+ATARIKElhvuxzgA+xFCT0fXg9QYv3MhPD2+W1plQfaluVjAFyT1eAgvEmSm0VyDkXhSDncGS+ZCzwnW8IldHn5v4KLfv+cYLqUtEhWdfe3/zG/zQKanSiAysUnX2e+eSyNmXRbv1s2Low0+wIlGN+cXYsmeUBy0VhvzIIPIphjU3x3HaDJjIv9/bdZzYX5kpL/U1rks2qU/umQdgrCdzQevNZ1B7FGu9IW/z9NC16sHNZPWTkBgO2d/VCrjas6//mP+eWc4YQolI9pyLKFxQlcKXXo046Dff89Mr5rMweJMUYwqe8xnNdmFkQyguKfhBikTVNakifnGxFl005kaCDd1Lvaz84ZrEB8Iki7isMJBAh1bymgm7oBaa5bLt+RgFMCXtieV3jNvLGRt0eg10m1O1E/ahJXAR7dYAs/F1ZraLi5tXpawqHUUERAZ+/YuEgddJ/5+aNrHhKiQO8IRvZWPKD88/gDo6TwMnc7v32VkT1Ot1G7ZTliSEAG9FK+QqQow2sQuYzcLtOb7/ClolLXsv6as4I6Z/BGpd0DCTDZDAspgVMtriNvCMxdnXAkoeO1PvtvB+QU5e6h5hPHlceNfbaaf6md4GmcOEiRL13wyTqIImd91j/2jFtFuYFO9fouwuUUxW61q4J0exM5Zw36sWARdQf/BcR8p4lzpM6JS36hEVYXAmzk0vtituEI7W0KuDhRFCVTAz1iUlPWZe/L7dmJQYx4NdwNTKbGMs18GkgsZ0AaANGIW8Z8Ix0XitH8LKelSHPonR86YPWdbnqZjbUAhUyLUwzRh2W9wiEaqwaqy/FNEGXTOosDBnNzLkBWsQxo3YtLAMMv+w7S9s27eTb8rIwmecTOxtufK3lJYzB4Uy9H11n9MVH6dVjNOUlkX5xjZcY6swhwpqzizkCCZrRtAPCR8q55caKlTmG0GCsUQc5YnMAzNrobUYgPkzRwM8kUB7YLR2b5uMJL94FjnY0DcspDVIdh9U1HE1ejWmoRqzxV5Hk6JA4hYnWXPpqCnkiwMwMnaz3fdzgVQ/C7hAMiQ3yGNqHDqq9ofnB3D7ECTpyt3U1Sc97G+fL5QZljEYZ2M+1G4v2sZ8Kv5sRp7sFrQ4G3Bp9vvldBE+Lvhu48UlgCS9n1Vo9JhSQZNUodVHBjYZgXO8qazZ+USSvVXyNrpx9k26y5DfgFcuSyCguVDp7QSqbE+ShTUS/fKzUvT5UDctdniaPoQR77LBDK3u9n7BIb02QRuw9jD8YQHZR+P7zME4vL9RtTxkr7i1SfiDbzeKeS5a8GDzEhbMMqJFz8QVMgDZ15s16JO6lj/73DoYizsANRDDmCd5IKje67PStV4PyicfAbiEeHscRdHcr01a3rqlsAM8zjdm/UR9wKE4+0xW9h1Li38Aaw4OEIGjpsbpVllSu+v0MgKIrRgTIvMaUpYPu9wjF7qY1ngVuyXRByisUbZEBC4ZJczlhZXP9seUgnvQvSbk+kP32JNRn4/Sn6brdK02RXB+U4bLFOcpZh1H20y30fq3akoodnbQDn4sFQ8b1GoVaolTsIR/UG+u28ihGE0dk62Px8fwuHiKIpIs/8O3ajSUBIWp5skJTbC30+dM8OTB9XH2ktOSU/oQ4l5Qq8eHXJcR5EmlRHmSp16A1dIvfeGsZQkihNqLYuZcKma/VM49yL9mkSGns4s02nAdRhK8V6uqHy393sY+30qdQ5HNn5+5ZDbmBp9L/zbPqDpb7n8RofMeatqNWoiJfEcrkq3yFlvzonaiy9LfLJfDX+6bPVUU2N6hR7TYTSS4ygm8Rvl3bNYKXMkN91bGytJy3qkN/+eJM59Aj81TztVt5AdcvlRCpN+DOCTE0o/PS1+wUP24w/QKl49p4PBnLhgo1QWiGpD7ZNPqnnYKw4qFqwhvZfO0mkopheNxLWqO+VCJ9RZwUT74VlIz9IhkXQI2ccxZbl+MyuISeBVZ02xGr+Do6p2j8E4aF0fMWxTsoWMpdzqZGWJXrmtHY6S0NSXpSr7iMl1EFe3pRKKTUv8Uqxue5PvR7hH7NpxebOVaezyiSKCZTIFf3PkGDGDiauXajMBcXSbGV8crYOzcJ/ZZE2KmeWu1aCe4KXu+9KjkZXwB0M5oQpcjK0cWGK0br+4UF2NrpyjmIJi+ngr85/rRNJZQlVDg6vVVUNPRG/oQ68TIt2tix7DVUtr8CPhm4H6hzAlh1hSPVkwuvUMLFr+zqbBrGvloE500Ejta9KGvzxuqe8JVJh+Anlt2fux0ute5scNAie6yDo4Rbh5sj/CrZ3RKp6FN6vsri2/o/b84vtr9vL4RDGQfmyHlRkGskBjekmibL5gOnPUpzfoEtoi1MxjLcYQ79pFDuvTiq7SHC08o9YX5daga4Clhxx1141U4fF4ysVWOUMm8/xvuJT4dwzZdoo1I7w6xzrg6t2SqrITA/T9mgr34mPsUP0/vGSqYCI9FceTbsZ4WY3b29FRjH14q9T9O2Tczjwq4c+hvzYnfYrfvnvgSWWPqu7z8C1mfu3jRj4Vldkk+YcvSJ0gSoAI4L5Us3NewUoxWfbi049cRpZZHi/sluf8vfrWpvI4INCllb3+tZ42gGpG49i4vJJ5dx3ISBBUfKiwumkSbniE/6k+6nLE7mWVAH3i+WD9+DeVOF7P5BRUZ2qPEfifsebN+e29IY17O5akHHIEe2WXv2aBLtxtHkZzAXzfmI0MlUPXkPrQY30JxWvhPuMAzXjQKVspV8k+gOCLHsyM/L7fztrNEJ5t0/Go6vZcFrEfPWEPh6g/nVD2HlyyNqzaxvrI+fkKbV8Gw2Ecqnp/jpjfB5pvDl7ia/vtGtg9CmKH1IQu+LIpXv+kzTOfhBl0iYBs9Vs+Yp29lO82mW74PO8C58wtrStvsFHgMQ4lNigLMX/68qC1atAaJBdAVWKs/noYUtFY23EyP3FISG9CNxRUPelA1d7Ff7ZmzWFUW8VqMAcIm81HlU8qAJCyZszS2vgpxl2NWlGM/iIwTj3YHpRks+BmHDMtUpzFR3YCkwJjB7Xrfof+3D6MqhshHRwpjzYRdBKyHuQprzVOrb6Ck+NGtHTEPVC50hyKXFZQlTqSS9EzwzGeKyjhUQSryflhxFIx+efYbBXXr1Hs1fK7n8mA93s7Y1C4UUmQu7oD0rk+MS5iQaDA3bxc7gi2mfuXgMINQ2D9Mqu52srFWBTCSCKm9fJza7oznZiU79QrM5+PWbdfD0sJEYHssJT4seU/09TH5QLhLHbDVvaALMVqWguwPvtTwDPum+VKB0JnZKljfnqwhp4wjveD4v0RRoQBCQHDuf80lIo2jqHuPBhw6jBJVJtWRRybGPGwORDKYjOb0noetY7YpREDTk/xajmG6Wpa421PZGOp/OqLCxmeY0cUYKVsBpvIf4oHb7BKT0O5t7pqSEHDUdSwnGDdoaUIqxkIb9Ygtl/hVnONGLgl2NobR8m5UL3c4VTXCMzHbipCRF2OozNO6bQXgAPS62MW6hGtxbGi0vN7DjU9/Tta17j3XuIqLOdk0BGR3ShmebR86OvQsS7eLpPgSYI0V62UDx1eEUKY4jYG3UbaRDlwAL3sFUpUmU6OuBQ2qd/CVVY7tmi44i8hWef5fyTc8ZxYxHmngvFl/2XB0PaTlUIGJ/xnDGpuelic/nBEjEgrM9nBfTcFe2Onl4XInOab4vKGrBAkIxhKH0ct4Pzzzik6uyEKSsKNtI+WK1byZ7gJ0j6xJ37cn9VChxbQM3kENttqQibDt+3knzunt7zMplxmRx0zM3eBGvCBq+yH+ca+gTsUQP+5OY6q+8s6Sb/qo5KlqJUemTEcofpEawGsnrSqBNPRoYXDRPkJAcD3tdFoRwehet20N26tsl2x3VHBNC7GQZmtOTdpVdPcdF8oWl4NbdoLHdkShSUuFoa49UsCpgom7SbtyIy6oG3LDcvAY9/qd+ImoDzVfgmY0GUkOCBrtuSzfWAhP9woWKMRdMiT+/Txfes1OV2GMgaJ75xzz2NGL21ZRS8aTTLRhU5lVWR9VxAHY6pZMcAm5yZ4MrgdwvGHfKp+usAOiXARDlEnBzQwgO81JtBzxs94M6YpEorCipxH9XtTUsZTvQ5k8njpfGPmgFpmGPkxWB18A0y6UupZuesaZcoOuFvQBnmTOdmeY2UfqoaQwZ4N+Ho/wtavFClZpkNDPXl19rsTFW+kAsc+UatKL0MoKjw3+PyU/V+JgZUPbURWsOaLv/I6WGrR9hKSGKc8MpYkHcf5a3v/STHRS03kVykceY8DsyPwBLkppRMHuDzCFXdYC1FZ7sA3vTkO5OZ20meC+YbszB4ExN1T9ucBVNr+gB6+tNNsYT8ppEk3wDQ1bllb0pZM3PM0vjBvvBBgg91Zt0qoKUW6TPEs64yYH7QL7CGhmGwOmtoHeeOVazJh+mvkYMP/YVn9FSaZjGpOCmDJrD3yr9AGXoKKzAYjH4lgxhZJDQKvlTDVj1EVB0CBaDHbHv1380Ly7MyqVQ1NMzy4CdyMJl9bn4ZM6JN9AjApObU6xQ43EWHqmGSXhegnYuRDuBQc9oNNJ36GtpWc8sHC2iEMQyPkqXk0IJxHW2I9oA2Jv/BxGoeeqQGS9sAvUxEirSlsrJBXG6BEOcW7qjBmFRdzRJgOnfvujGeFkHMomZPY7iQp5uUl4VPQXN6pPEAXK1yN0CDYNGuG0atbk1Q2MxH3+hhLHTGc6ZjZinBIR13fYawDJJwZpn3YKw5dWaNzyrYu9hd6bX4uQWFmSAGdjiDk6PDRYQBUjxM/fusYEiI3yQAnmUb1xlBH6WTeQDemY/oBX/r/kTxOacWcl8ru9v+fbMvPnBSGuzc0mjpooWG6li2pjDqbhYHFC0c3fRI2LGLG6ZAby+VMNFOvPG/T5cF32HVmWoYKKLPv6Gau1O/1VNmg2VnwmV36Z9RtgG+/ANnQKQ4Udnp679C/9FOGGOcz+xB818/Li4SSEpCCmJdjoEMCw7QCo5F05FTst5BvVI1qBTmfmgWMFI98OMtqk9nuYHifq40BdNBbn60W7WLhLH27ujYY7qhHRyCv4J+6Bc+SUoosn2eg1bnOJ2Ku16Ud/mpfPr1uLdNjtWBQnsA3/l2WQwzAWI1vNDM0RqUlZvwVqaEAPTW7lD84WSn8y6ZbfWh9u4DRQAW2s1rJQj9e4uK7I21GS65Sn0g3UlFBqBBNGC7Rjlvny1o3XasoG+NbJUDnAubyv7YVoU7m09POClV6i1DopW1ngUiboKJWo4boU5gCsfPsbwlED32TwTP0c7sRgeUkttbUHzZFwGWd3THuKRi1k7icWJutP/+ZpKjcM3+MBnC/2apKxW2jY7RQAQqp5qfsiU3JD/4tIFCiqwmN5eQbF0dlJJBfCSY/G+FyG2IHFWz4FCH7b3Tgnl8oCKY76ahLVylw5PeFSSWV5YxhfBgDsm97cJgTg/u3KQ26NbW1EPWp5ZjsnIyiqeH7tIB+KyOqODX8NeDYdChtJMurEdDp+Ucs8BErLMGDF6AOkNshk3qN53HWC1iP/yIxMblUg0fcIb7jdYDlt4A4lOwjwq4b94y79eJfWyMr9FdctXokQcFiaPNOpGNrMiZzXVnJJ3wV1unBLNKyOsy4hH29JZqA1MIWXMHcJvdkVM4v6qD7DNZgWv9sw3C5s/sWjDRgcNSnzBYpplWJbcdZPGVgWoDH+Dv+FB5Bhjswgv5za4TmuZmKyl8/d1mHWT8IAPA9RBbXbOmwvmd4PHnnRJoRRM7xtxzkrNkn6zKIgnmeIm1de3YTbhLu3AL2kJaXZNnDHILCZ2Gnp+1N5/zIFdrAsho2vZPVEu2kYUhyDgMj/yplBFP+D5m5usqUIIQt9QpuMazwHZuFy27dsnwRA0e5hsHtARuyr0D0EUs07IdWLgoh52fbB32KG/WAO1m6FS3N/qinFVjqiQEZz23/PLg0q1qpc0aZZzOBo+0WOPRAnEgAmhsS+/1AI5En5Gi6wDsk6yPSj12vxgb7gYJU8gFQaV211dpeFYQ7LkkW8kayvdl4GwK4YIPL3JZY6GU1s7OudY9/PwnBJGzc9HQoShmmf0bAvNMU16txljiltcOFNbMyd4Ea1zd5i51ZUBBlvkDDilh0+EkOrB/jo7VngVgNoaVTymgd1XKbDptzBkCzwh5AFy3/hTE967A+r4C+i6b19wJfT5dU0LJrsDOPc0cv5PkUAEo5OU49Roqv3xoAHt0PASkh8CDb2F77XblcAYUCkx96wXFMdqZF695ZHv6gTRs4/Ua50Tq8LVVm4zSkXB1Cq2blSB2MJm+CeJq0mXDyfdvz1NvVfqJg0hbL3cRhgrVCJU3pXGXpUWfZ5ME5K8nbfQ8Dwg5VOVocO9GvD+9802QKE68H5Nd/AJhLDylF0hme4tXOQOOapnFhOGPg9hW+53LazwVelqz0llLXzr7LHZIweJ/HEzwLEaGspZXa7LhDVYalALbEKFFYeRAGh7CnYL/ccNj9WJ8z8gXbiF4lZyK87nN1wdkiAipORch3I51gWmYnn9ERUvruZ6aRtRsVqDE5SchsjIwP8QBBu9UesNMXIX8IBy8vNF5uujJW5HLM+FxxJ8q3hAFEheGCO9tEE278m8WfTY2psdMdQP0htdRSxSJBElsBCoThEGrtrLP3zIxvPQZZ2aMdMMINggus3G5j54z6hLjFleoYP8VoX0PhGPiezh46/XrcA8PQTPFOgPjYwfE8gp7xO9lotIthmyyH7F01mqQclULxDML5LEXugfjKpSvGWNJsP5Rj9HyBd6wVV9wNk9NMjoCKHvMnJ+U7sH/s+2LCWi8PMuzeimxSPnqLFvf32Jph1byz2OKhCzPz4aTtU/gcyoOJ6xvJOTRMFKFJf3sGZ3FxlDffNWWZOkuuvdRdV8BwzI+sq8FYh3uRVsA1bp5+KfrPu+NX8jpuubFwosrdI6AQFJFHlOWJ0r5Y/6nNUSXJh97kEBF7QKfR5naM6RscMDL/uWQXJKiVpKnN5BEn5EBD6xbr0UZDDYPrBYmMVZX6oqX2oVKHbTayXjskLFmBsOQXzmC/ghPerjkfZnFNE6x2oX4q/2HgN4JaQwFRT0rNZYK0OWprjGxOwViAX81VGi9k1cSvRWu7x6+nF4oGkr/Rsh9vaCX0iDp4UEdaY2BzA4Q9p96E7/ParPI2mr8Wt4epYnGDtRTWF/JIlp8dJKH5VUozU3B4Tc+0TxXHQUHFE1K81o2XCARYG4fQXgbnixHnXOYfo9TuoRvrifgl05qwabfCzHBJx6glajsR8v6S6de+RlyQkOEWmd/G3MxvQbV2nit1RWC1C37d0V+MGedwormq5eaiSrEznaoi5i1yetmMrDmmgtzAGlUOI3Q/DLhZ1oXxosw96SaFerxKPH5N8fuaHbZcHgW1qFIBpRgE+IpZj52iR+RF2CYB8Dhsz0yV+1uyydhb4/JJbgMWteAbOyDUpnH/uKQ8BxqYvqhPCPbTGMMjkCduGSDn5vZHheIlIk224m8xPiF/VnBMJ3QSf8wqPoYsLP/9RljzxfvLoe4Gedk/l+Gwx337QF6LGwKlXqFcZbM0dIpEcYgnaQcGUDH5SUYCKtKrmzo04uGF4giDO36ZzI7pk54a0Q3DSAX0YHHYf6yBA9F/gb5FCtnOIyEnJTCT9lYrmElmsAHeVyP+M7E9I3Ag//Z7eLjOtXJlue9DJnpG2DYJuVodGn1SMPQ7OKsOJ2CFlPzuDRDpy9a51VeTuIuejwETSSM2UW88PtXJ5GCv4t1DF4RC7aHWrj/1We2Z5H+0el5iyw/0sc/HOrOBMdPMWWC6zzzfLDwxS9oe4C4GFnpS8aWSfzKvP/U0sofjji4diu0EXoRddVSrE2Nz82V39hg4P1//BSS/o7KgK8EMrLiUE2jR1wwbahacPTeGUqP6vBztmW6r9N1bxFxqRXp25gaBcdRdDXyJcWsAqIxLUokop5nfrnk+iTO27L1eAsPmmb1JedqESrJBOYnbL055PDlLVu2ypvyh98Hyh5SWEC9k2T+ZEwYVPUg+3DvYuzZuXfJCGxRTJxksKRTGhk74TzMUCWDXTXQni5m9DVtSLeXA/FYR/PoBHP3oQJyGmbSI87ryEMdlQWV26ozECmdiDlXyBi39aiti1XP+jINT5aywJP1UDFAHk3h9cQqGqUz3UjQTStmHTb1fBt2417I52F29HYXyn9EXesstZ7m4vFbcyR/jvqLRD8uWWhy5XVUARV2F1cS1PbhpHUicqdI03yC42CPclIpEFlV8fw1by7pc9GbaKY4LVyy1PU5kb4lcJnhstdl6fRYtC2ubBBRS5Cm+uEf1S98ozMrnZW/GFJFZ5KfnLlssYWkYqJsb5s2Eh7o/sY3F4T98nmUo6UltdFzY1sAg5qDShkID5tZCTQd8XQ3vYYiAY66q0OdOmyo3fai/ftodHvLu/7/jqDggTZjjUnNXNx7/KWYDgcxL0xGcikaLvHj4oqAllggmH3TtW1r2t3xlIr2qDFwB0txKDS9WChDQ3iG0q176K10EfL8oaDzxs1LQ/PAviO0U5DQFgFZHuZtnUm8NMOOrccmNblK3tj6f0x9/77yt3eF3dRPY2qkId2Yfh5hKJ2ne49Z5sNXi17uDkOZWGPPKOf/8sHpjyuGGwN7f/5NPKGE/KyvKa+IEsjxzGpkZsXOKPZHKMgN8fXIJRXSksS3VfU+WZpn/0SXb+ph0DKLfLWXobRz9hbVKYuep4Y7XpiRmKy1qzJdDcbctaXVHD1E6vySwFuXX/Dbi23DpfThLjAlIg8nkPWBfgqxxsW4XMeFVUwGkzvIGBF/OsSY4BDkTT1XIoU5BVxWSse3ZPoee1OhPDeBB9XfPM/qcZA7F1xEHzENOjLGnhDjRLLW5WzaXaRFBL8tSdvqTNbY1OSRo94PqszpmEbqpk5kJMQ9wAbFTgKSXp14/HOrXQxSWpJ4Ybz9GqBtXi9lYS+DWWcKnwjQNEoMX7HJq7/6cYN8qGE3P/rFZdGV48b1AH+sgEaAWOu6BpLDSq7UmAUz/M+QXKYk3e85DMX94T0NPaIz0F2bbHz0Wr/+TPplo4KSTdBEzRHIKSX+CuyOjQh3tBTaXZ4rL7LnfHG/i/WF1KQaQtjbVq5LGcIiAWoEShFWHh1TyozfNBeBZm5uVVI8g4b7VvEwKUBeR/Lr+ejkCiYM2Zb1C3Qi+uOOyR4iV+HGTam8sH5pxd6ekgbdzCDnNCC1OTaWTO5x9tS2sGXvq+q2NCp6TTAVIRVZ7jFjzP1ygRwiKQjJ7KO1+ICUnQG70B5ibjrdPXjGCeyQ+VvqCscqYgWSPvRO40wPLkXnvGI4dH/+zMFId0Ylz2LO//IGmhgYIXAzzmD74C33Qf8diAZglhMm9hoCmtNPpclQ6zYwPWlO0p/tD2Lj0GLp4pw3CpAhey5feucnTUjHLj7cfhtdSEo1mTKMSoTkkzPJROP9r/MiqVFAAboLxOJpa7SD4E/WMQcgOMvTAIYdPlLIkRlfpG6KclzcY8mWzKI9VXBAzVjNFe1A/2YBBEd5ggcYptIG6/3P3juhBIlsQTEZ3lO9N5BC8oBSVIlvm1b58WyKNMP8XqTOPOstvcaLEUSYNZ8iYLDxezJy/99sj+6XRAhfF9rEE56YcLimZ8nKgr5V3eNAcHDQEl7SMHtaWsPBKD4rFMfKYoW1+t0kE8Z8PU9WGONDrwp4OXGv50Oi8+w0V8babAPFGzVrp2Qjg8JSXLk6h3+q/pUIIMP2968WfFaB07THZv/PGrDuaw/Yk7g6AG2ekWuW3KkKAAWOqhI4U35eK+N1NxIhQPzjsKbsNn7h9/XmHPGQUjD3AOfMzNydmpYYisqFpM3xTANgKlOQ/0dxZzsF7bvUvZUBwg57OO84/Cva4Fnk53ypdrUkQaVMj9h9cm/nrQ6wGimEgpZdGlN1x0Xet9yCAJf4XLw5/PAVYWrqe2a+eP8h6QxiLWR4mSup9e2BDqnDqUNAkCc5GgPKlfvwtVvpMxkz1zMfo4uBtM5XrZUdZhM0vcMhaBaBLMNtkZ5lRmwnuhGhLJUIcbPZsZkXmbKRpmsLL8bre8+VNmRpqlTXb8O6pdEfgeR3BXNVJEztySZpD5wFvA/N6s4paqTnJteXFRg1u2X9wAdvW1St3a41pME3O/aZLVQ9cFHdqnN93vzxn5619G0wZdtzDZYvPXZb+lTsHnIgKTAyb5tunNxfyfjDvlZN8ea4zYpG0/XIUfJgnnaz+oz+9N+0/bg3d45vA6jRbFiGJzMuan3wpIoN5pcq7aUg89IwD1xSfbLry1kDdeOZbDnu+dIc2ZlwnGekQ/EaFgGLLsbgArc6yd5eVdQpuLphK4Qq8YDHoHaSFPYvKOucsb2EqAT7ZPYyL3jiqWIH4CQViklKdyR68Bwyb7G+zpMmoeaSZTX8mjeXDax7rFc+88yPrEuRt6AoUG85qqSfDleO0jFnT87hhMTS+v6VtbM1tfkR7EZ3gWOnk9xy7ta0mWK8ljdglpk/JkYYr6ZCmCyjIn//14fmnkdYU88YYrj0H6NvGav9L1kOaNJaTdGvnhcgWtfljoEo1VQJfL7pKA6f0YJMMzjbEGoBWN+QO9df1mLJhdvNT/hjJjMgeSghWGL3NSq/Y1WNpBSp6vv2/BYMtqYWh9wh+WilkRpdsc+DWDXc0/x+s96RkvbK8lcmAvvajeZ0aGhrLCDlYldapLd4Vd3HW/xxXPz+tvxoh8anDABHl1Y2T4zm/r5b0zAY001m+KDdQ8e4cs/R3qu3lCPEVNa+kVAcKCyax+QcPtstlrYCnkjNAxEjxZ8Cmr2bQRqK2eZeqqH02aDH5S7FA/H9Tv44Emx6VEL3CaXEdYgSogcrIfcykjv/QCzcD09ovMTFXnjCpq5hYwavEN6hssuPdSMdDKcrzXYAGNzZh9Mt5gbrRTNrb1OLjwWiaAHkfMWJEAZyfOUOr3LX7iDe+aUWpyG6gKvNCtW/FwSFK+P997G7Ngn8+seZ9lhhCN9TXtsF59BOR0sX62WBz5HHPJjn2KMKNWUoKOzJdRlx2CYsBtrd7/NHfNKYT6d10hOA8LYSIUdH2N6b8Dn9gJtHwZsIoeIPX5L5/qRfo2PL6zu9/YMpM1mbrDh8jRmz0iBx33UtcdTa3CVcXOmOX+rzaNFUYG+0O4Syr5XnyfcDejc/hfeRwU/oFzgISdnBBhhjOLt5jRyj5n6eTgDRv6MD8fhMkEejDo80q+2hyGmCGytnHtn3wk9MEpzZAaf7NDg2iKJfxO72iO+MjDJFr/dqLl7RP5XmILo3ihF+T1ZQU8WINKDfYrI1mSiIAav5+kq2DCjnJE2acyMD4nZykuZdf/YtElUs66aOmBDMEh0VdIU/RVprGDkSkDuROZ0A36wsNDeoldMOlDcNMQCgLpE5HhqNOT/QunV8K7SMBNKigc2Jc3hdCm1wP8UQlO+MYh+FdCa7kahV/ElP9PIH9iyWvTP+78rXRH+jYrwMvBwZXWAWzM0k8Y6hgWotbytlX6kwGyWjqxBZgXfjXpa8WiR9Z9A0J7JIrrzO5jIg3hrpmlqebkJexCsBkF3JJBPWVa4PCach3U4zUbsxK2vQH24KkNZbgw9YABrSq2I/bcRSm1vhZ9UICA+/bNxKyIovg62NvP1oqTBwaWAaOSjOepDFRkVyqS/Beezx2g51P
    
posta roxyy 14.11.2015 - 08:49
fonte

1 risposta

5

Non si può rispondere in questo modo.

Ciò che manca è l'algoritmo di crittografia. In teoria, anche i certificati potrebbero essere stati coinvolti, ma non lo sappiamo a questo punto.

Se sei fortunato, il metodo di crittografia viene eseguito utilizzando una chiave simmetrica. Avrai ancora bisogno dell'algoritmo. Se sei abbastanza paziente, puoi semplicemente provare vari algoritmi usando la tua chiave e vedere se ottieni un risultato.

Vedi anche sezione Wikipedia su Crittografia a chiave simmetrica

    
risposta data 14.11.2015 - 12:09
fonte

Leggi altre domande sui tag